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Abstract
Consider an operator equation F(u) = 0 in a real Hilbert space. Let us call
this equation ill-posed if the operator F ′(u) is not boundedly invertible, and
well-posed otherwise. If F is monotone C2

loc(H) operator, then we construct
a Cauchy problem, which has the following properties: (1) it has a global
solution for an arbitrary initial data, (2) this solution tends to a limit as time
tends to infinity and (3) the limit is the minimum norm solution to the equation
F(u) = 0. An example of applications to linear ill-posed operator equation is
given.

PACS numbers: 02.60.−x, 02.30.Zz
Mathematics Subject Classification: 34r30, 35r25, 35r30, 37c35, 37l05,
37n30, 47a52, 47j06, 65m30, 65n21

1. Introduction

Many physical problems can be formulated as operator equations. In this paper a general
convergence theorem is proved for solving operator equations with monotone operators.
Consider an operator equation

F(u) := B(u) − f = 0 f ∈ H (1.1)

where B is a monotone, nonlinear, C2
loc operator in a real Hilbert space H, i.e.,

supu∈B(u0,R) ‖F (j)(u)‖ � Mj(R) := Mj, j = 0, 1, 2, where R > 0 is arbitrary, B(u0, R) :=
{u : ‖u − u0‖ � R} and F (j)(u) is the Fréchet derivative. Let N := {z : F(z) = 0}. It is
known that N is convex and closed under our assumptions. Assume that N is not empty. Then
it contains the unique minimum norm element y: F(y) = 0, ‖y‖ � ‖z‖,∀z ∈ N. These
assumptions hold throughout and are not repeated.

Let u̇ denote derivative with respect to time. Consider the dynamical system (the Cauchy
problem):

u̇ = �(t, u) u(0) = u0 � := −A−1
ε [F + εu] (1.2)
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where Aε := A+εI,A := F ′(u), I is the identity operator and ε = ε(t) > 0 is a continuously
differentiable monotone, decaying to zero as t → ∞, function on (0,∞). Specifically, we
will use ε = c1(c0 + t)−b, where c1, c0 and b are positive constants, b ∈ (0, 1), and assume
throughout (without repeating) that |ε̇|ε−1 � 0.25. Note that �(t, u) is locally Lipschitz with
respect to u ∈ H and continuous with respect to t � 0 under our assumptions. Thus problem
(1.2) has a unique local solution. We want to solve equation (1.1) by solving (1.2), and proving
that for any initial u0 the following three results hold:

∃u(t)∀t > 0 ∃u(∞) := lim
t→∞ u(t) F (u(∞)) = 0. (1.3)

Moreover, we prove that the solution u ∈ B(u0, R)∀t � 0, where R := 3r , and
r := ‖y‖ + ‖u0‖.

Problem (1.1) with noisy data fδ, ‖fδ − f ‖ � δ, given in place of f , generates the
problem:

u̇δ = �δ(t, uδ) uδ(0) = u0. (1.4)

The solution uδ to (1.4), calculated at a suitable stopping time t = tδ , converges to y:

lim
δ→0

‖uδ(tδ) − y‖ = 0. (1.5)

The choice of tδ with this property is called the stopping rule. One has usually limδ→0 tδ = ∞.
We do not restrict the growth of nonlinearity at infinity and do not assume that the initial

approximation u0 is close to the solution y in any sense. Usually (e.g., see [2]), convergence
theorems for Newton-type methods for solving nonlinear equation (1.1) have the assumption
that the initial data u0 are close to y. We obtain a global convergence result for a continuous
regularized Newton-type method (1.2). This result is stated in theorem 1, and proved in
section 2.

Theorem 1. For any choice of u0, problem (1.2) has a global solution; this solution stays
in the ball B(u0, R) and (1.3) holds. If uδ(t) solves (1.4), then there is a tδ such that
limδ→0 ‖uδ(tδ) − y‖ = 0.

The proof uses essentially the following result which is obtained in [1].

Theorem 2. Let γ (t), σ (t), β(t) ∈ C[t0,∞) for some real number t0. If there exists a positive
function µ(t) ∈ C1[t0,∞) such that

0 � σ(t) � µ(t)

2

[
γ (t) − µ̇(t)

µ(t)

]
β(t) � 1

2µ(t)

[
γ (t) − µ̇(t)

µ(t)

]
g0µ(t0) < 1

(1.6)

where g0 is the initial condition in (1.7), then a nonnegative solution g to the following
differential inequality:

ġ(t) � −γ (t)g(t) + σ(t)g2(t) + β(t) g(t0) = g0 (1.7)

satisfies the estimate

0 � g(t) � 1 − ν(t)

µ(t)
<

1

µ(t)
(1.8)

for all t ∈ [t0,∞), where

0 < ν(t) =
(

1

1 − µ(t0)g(t0)
+

1

2

∫ t

t0

(
γ (s) − µ̇(s)

µ(s)

)
ds

)−1

. (1.9)

There are several novel features in this result. First, the differential equation, which one
gets from (1.7) by replacing the inequality sign by the equality sign, is a Riccati equation,
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whose solution may blow up in a finite time, in general. Conditions (1.6) guarantee the global
existence of the solution to this Riccati equation with the initial condition (1.7). Secondly,
this Riccati differential equation cannot be integrated analytically by separation of variables,
in general. Thirdly, the coefficient σ(t) may grow to infinity as t → ∞, so that the quadratic
term does not necessarily have a small coefficient, or the coefficient is smaller than γ (t).
Without loss of generality, one may assume β(t) � 0 in theorem 2. In [4] and [5] one finds a
description and applications of the dynamical systems method (DSM) and some remarks about
discrepancy principle, which are useful in treating problems with noisy data. Many physical
problems can be formulated as operator equations with monotone operators. We mention the
theory of passive networks (see [7] and [8], ch 3) as just one of many examples.

2. Proof of theorem 1

Let us sketch the proof. Denote w := u − V, ‖w‖ := g, v := ‖V − y‖. Clearly
‖u(t) − y‖ � g + v. We will prove that limt→∞ g = limt→∞ v = 0.

Let V solve the equation

F(V ) + ε(t)V = 0. (2.1)

Under our assumptions on F, it is known that (2.1) has a unique solution for every t > 0,
and limt→∞ ‖V (t) − y‖ = 0. One can prove that supt�0 ‖V ‖ � ‖y‖, V is differentiable and
‖V̇ (t)‖ � ‖y‖|ε̇(t)|/ε(t). We will show that the global solution u to (1.2) does exist, and
limt→∞ ‖u(t) − V (t)‖ = 0. This is done by deriving a differential inequality for w, and by
applying theorem 2 to g = ‖w‖. Since ‖u(t) − y‖ � g + v, it then follows that (1.3) holds.
We also check that u(t) ∈ B(u0, R), where R := 3(‖y‖ + ‖u0‖), for any choice of u0 and a
suitable choice of ε = ε(t).

Let us derive the differential inequality for w. One has

ẇ = −V̇ − A−1
ε(t)(u)[F(u(t)) − F(V (t)) + ε(t)w] (2.2)

and F(u) − F(V ) = Aw + K , where ‖K‖ � M2g
2/2, g := ‖w‖. Multiply (2.2) by w, use

monotonicity of F, i.e. the property A � 0 and the estimate ‖V̇ ‖ � ‖y‖|ε̇|/ε, and get

ġ � −g +
0.5Mg2

ε
+ ‖y‖|ε̇|

ε
(2.3)

where M := M2. Inequality (2.3) is of the type (1.7): γ = 1, σ = 0.5M/ε, β = ‖y‖ |ε̇|
ε

.
Choose µ(t) = 2M/ε(t). Clearly µ → ∞ as t → ∞. Let us check three conditions (1.6).
One has µ̇(t)

µ(t)
= |ε̇|/ε. Take ε = c1(c0 + t)−b, where cj > 0 are constants, 0 < b < 1 and

choose these constants so that |ε̇|/ε < 1/2, e.g., b
c0

= 1
4 . Then the first condition (1.6) is

satisfied. The second condition (1.6) holds if (*) 8M‖y‖|ε̇|ε−2 � 1. One has ε(0) = c1c
−b
0 .

Choose ε(0) = 4Mr . Then |ε̇|ε−2 = bc−1
1 (c0 + t)b−1 � bc−1

0 c−1
1 cb

0 = 1
4ε(0)

= 1
16Mr

. Thus,
the second condition (1.6) holds. The last condition (1.6) holds because 2M‖u0 −V0‖/ε(0) �
2Mr
4Mr

= 1
2 < 1.

Thus, by theorem 2, g = ‖w(t)‖ < ε(t)

2M
→ 0 when t → ∞, and ‖u(t) − u0‖ �

g + ‖V − u0‖ � g(0) + r � 3r . This estimate implies the global existence of the solution
to (1.2), because if u(t) would have a finite maximal interval of existence, [0, T ), then u(t)

could not stay bounded when t → T , and this contradicts the boundedness of ‖u(t)‖, which
follows from our estimates: ‖u(t)‖ � 4r . We have proved the first part of theorem 4.2, namely
properties (1.3).

To derive a stopping rule we argue as follows. One has ‖uδ(t) − y‖ � ‖uδ(t) − V (t)‖ +
‖V (t) − y‖ := gδ + v. We have proved that limt→∞ v(t) := 0. The rate of decay of v
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can be arbitrarily slow, in general. Additional assumptions, e.g. the source-type ones, can be
used to estimate the rate of decay of v(t). One can derive differential inequality similar to
(2.3) for gδ := ‖uδ(t) − V (t)‖, and estimate gδ using (1.8). The analogue of (2.3) for gδ

contains an additional term δ/ε on the right-hand side. If 16Mδ � ε2, then conditions (1.6)
hold, and gδ < ε(t)

2M
. Let tδ be the root of the equation ε2(t) = 16Mδ. Then limδ→0 tδ = ∞,

and limδ→0 ‖uδ(tδ) − y‖ = 0, because ‖uδ(tδ) − y‖ � v(tδ) + gδ , limtδ→∞ gδ(tδ) = 0 and
limtδ→∞ v(tδ) = 0, but the convergence can be slow. See also [3] for the rate of convergence
under source assumptions. If the rate of decay of v(t) is known, then one can choose tδ as the
minimizer of the problem, similar to (3.13), v(t) + gδ(t) = min, where the minimum is taken
over t > 0 for a fixed small δ > 0. This would yield a quasioptimal stopping rule. Theorem 1
is proved.

3. Example

Let us give an example of applications of theorem 1. Consider a linear operator equation:

Au = f. (3.1)

Let us denote by (A) the following assumption.

A is a linear, bounded operator in H, defined on all of H; the range R(A) is not closed, so
(3.1) is an ill-posed problem, there is a y such that Ay = f, y ⊥ N , where N is the null-space
of A.

Let B := A∗A, q := By = A∗f,A∗ is the adjoint of A. Every solution to (3.1) solves

Bu = q (3.2)

and, if f = Ay, then every solution to (3.2) solves (3.1). Choose a continuous function
ε(t) > 0, monotonically decaying to zero on R+, as in theorem 1. If B is a linear operator, and
F(u) := Bu − q , then F ′(u) = B, and � := −(B + ε)−1[Bu − q + εu] = −u + (B + ε(t))−1q .
Therefore equation (1.2) takes the form

u̇ = −u + (B + ε(t))−1q u(0) = u0. (3.3)

The operator B := A∗A � 0 is linear, monotone, and theorem 1 is applicable. Therefore
conclusions (1.3) hold for the solution to (3.3), and, since equations (3.1) and (3.2) are
equivalent if (3.1) is solvable, one concludes that u(∞) = y, where y is the unique minimal-
norm solution to equation (3.1). Moreover, if the data are noisy, so that fδ is given in place of
f , and ‖f − fδ‖ � δ, then theorem 1 yields a stable solution to the ill-posed problem (3.1).
Thus, theorem 1 yields a method for solving arbitrary linear ill-posed problems with bounded
linear operator A. This method works well numerically.

Appendix

For convenience of the reader and for completeness of the presentation, we include a proof of
theorem 2 which is borrowed from [1].

We start with the well-known lemma (see, e.g. [6]).

Lemma. Let f (t, w), g(t, u) be continuous on region [0, T ) × D (D ⊂ R, T � ∞) and
f (t, w) � g(t, u) if w � u, t ∈ (0, T ), w,u ∈ D. Assume that g(t, u) is such that the Cauchy
problem

u̇ = g(t, u) u(0) = u0 u0 ∈ D
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has a unique solution. If

ẇ � f (t, w) w(0) = w0 � u0 w0 ∈ D

then u(t) � w(t) for all t for which u(t) and w(t) are defined.

Let us now prove theorem 2.

Proof of theorem 2. Let g be the function from (1.7). Define the new function w by the
formula:

w(t) := g(t) e
∫ t

t0
γ (s)ds

.

Then

ẇ(t) � a(t)w2(t) + b(t) w(t0) = v(t0)

where

a(t) = σ(t) e− ∫ t

t0
γ (s)ds

b(t) = β(t) e
∫ t

t0
γ (s)ds

.

Consider the equation

u̇(t) = ḟ (t)

G(t)
u2(t) − Ġ(t)

f (t)
. (A1)

One can check by a direct calculation that the solution to this equation is given by the following
formula (see [6]):

u(t) = −G(t)

f (t)
+

[
f 2(t)

(
C −

∫ t

t0

ḟ (s)

G(s)f 2(s)
ds

)]−1

(A2)

where C is a constant. Define f and G as follows:

f (t) := µ
1
2 (t) e− 1

2

∫ t

t0
γ (s)ds

G(t) := −µ− 1
2 (t) e

1
2

∫ t

t0
γ (s)ds

and consider the Cauchy problem for equation (A1) with the initial condition u(t0) = v(t0).
Then C in (A2) takes the form

C = 1

µ(t0)v(t0) − 1
.

From (1.6) one gets

a(t) � ḟ (t)

G(t)
b(t) � − Ġ(t)

f (t)
.

Since fG = −1, one has∫ t

t0

ḟ (s)

G(s)f 2(s)
ds = −

∫ t

t0

ḟ (s)

f (s)
ds = 1

2

∫ t

t0

(
γ (s) − µ̇(s)

µ(s)

)
ds.

Thus

u(t) = e
∫ t

t0
γ (s)ds

µ(t)

[
1 −

(
1

1 − µ(t0)v(t0)
+

1

2

∫ t

t0

(
γ (s) − µ̇(s)

µ(s)

)
ds

)−1
]

. (A3)

It follows from conditions (1.6) and from the second inequality in (1.6) that the solution to
problem (A1) exists for all t ∈ [0,∞) and the following inequality holds with ν(t) defined
by (1.9):

1 > 1 − ν(t) � µ(t0)v(t0).

From lemma and formula (A3) one gets

g(t) e
∫ t

t0
γ (s)ds := w(t) � u(t) = 1 − ν(t)

µ(t)
e
∫ t

t0
γ (s)ds

<
1

µ(t)
e
∫ t

t0
γ (s)ds

and thus estimate (1.8) is proved. Theorem 2 is proved. �
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